
Sim2Real 3D Scene Reconstruction

Sena Korkut Emin Sadikhov Zhenzhang Ye Nikita Araslanov
Computer Vision Group — Technical University of Munich

{sena.korkut, emin.sadikhov, nikita.araslanov}@tum.de yez@in.tum.de

Abstract

This research investigates the generalization of neural
3D reconstruction models across synthetic and real-world
datasets. Specifically, we examine the gap between these
domains using a model called Splatter-Image for 3D re-
construction from a single view input. Two models were
evaluated: a pre-trained model and a fine-tuned model on
a synthetic dataset. While the fine-tuned model outper-
formed the pre-trained one on the synthetic test set due to
the fine-tuned model’s inclinations towards generating ob-
jects with more depth, no improvements were observed on a
real-world indoor scene dataset. Although our metrics sug-
gested improvements for the fine-tuned model on synthetic
data, the visual results did not fully support the metrics. We
analyzed these models on real-world data, and our anal-
ysis confirmed the representation differences between syn-
thetic and real-world datasets, highlighting the challenge
of the domain gap. The difficulties of using real-world data
are clearly demonstrated in this work. We provided insights
into the limitations of sim-to-real generalization in 3D ob-
ject reconstruction and suggest possible future directions to
improve model generalization.

1. Introduction
The generalization of neural networks across different

datasets is a critical and ongoing research challenge in com-
puter vision, particularly in the domain of 3D reconstruc-
tion. While neural networks have achieved state-of-the-art
results in 3D scene reconstruction, their performance can be
limited by the differences between synthetic and real-world
data, a problem known as the “sim-to-real” gap. Addressing
this gap is important for various applications, where mod-
els trained in simulations need to work well in real-world
settings. Synthetic datasets are increasingly used for train-
ing due to their ability to generate multiple consistent views
with easy control over environmental variables. However,
the transition from synthetic training environments to real-
world application scenarios remains as an obstacle.

The sim-to-real gap exists for several key reasons. First,

synthetic datasets, provide a highly structured, noise-free
training environment where object models and scenes are
generated in a controlled manner. In contrast, real-world
datasets, capture indoor environments that are messy and
unpredictable, with varying lighting, objects blocking each
other, and a mix of textures and materials. These unpre-
dictable factors in real-world environments make it harder
for models trained on synthetic data to perform well. Al-
though synthetic data offers a good base for training, it does
not prepare models for the complexities of real-world envi-
ronments.

To tackle these challenges, recent research has explored
ways to improve how models generalize between synthetic
and real-world data. For example, methods like ContraN-
eRF [10] use advanced learning techniques to help models
handle data from different domains better. Training mod-
els directly on synthetic 3D scenes and using special meth-
ods to adapt them to real-world environments can also help
bridge the gap. However, more work is needed to under-
stand how effective these techniques are for 3D reconstruc-
tion tasks.

In this research, we demonstrate these ongoing chal-
lenges in making 3D reconstruction models work well
across synthetic and real-world data. We investigate the
core question of how well neural 3D reconstruction mod-
els trained on synthetic data can generalize to real-world
datasets. Specifically, we use the Splatter-Image model [7],
which is pre-trained on the Objaverse synthetic dataset [1],
as our baseline model. We fine-tune this model using the
3D-Front synthetic dataset [2] and then evaluate its perfor-
mance on real-world data from the ScanNet++ dataset [11].
Our goal is to assess how well the model, fine-tuned on
synthetic data, can handle both synthetic and real-world
data. We also wanted to investigate this gap with the prac-
tices of ContraNeRF, however, the required modules in their
codebase were missing. This is why, we focused only on
Splatter-Image. While models trained on synthetic data
have demonstrated success within controlled environments,
their ability to handle complex, noisy, and unstructured data
from real-world scenes presents various challenges.

The rest of this paper is structured as follows: In Sec-

1

tion 2, we review related work on neural 3D reconstruc-
tion and sim-to-real transfer techniques. Section 3 presents
the datasets and experimental setup, detailing how we pre-
pared synthetic and real-world data for training and eval-
uation. Section 4 discusses the results obtained from our
experiments, comparing the performance of pre-trained and
fine-tuned models, both numerically and visually. Finally,
Section 5 concludes with a summary of our findings and
potential directions for future research.

2. Related Work
In this section, we introduce key concepts related to

neural 3D reconstruction models, sim-to-real transfer, pre-
training on synthetic datasets, and cross-domain techniques.
These concepts provide the background for understanding
the challenges and progress in improving how neural net-
works generalize between synthetic and real-world datasets.

2.1. Neural 3D Reconstruction Models

Neural 3D reconstruction models are designed to create
detailed three-dimensional structures from two-dimensional
images or incomplete 3D data. Early methods used volume-
based or implicit representations [5]. More recent ap-
proaches use points or surfaces to handle larger and more
detailed scenes. One notable model is Neural Radiance
Fields (NeRF) [6], which can create high-quality 3D scenes
from a few images. These models have greatly improved the
ability of neural networks to produce realistic and detailed
3D reconstructions.

2.2. Gaussian Splatting

Gaussian Splatting [4, 12] represents a 3D scene as a
mixture of G small 3D Gaussians. Each Gaussian has
a mean µi ∈ R3, a shape described by the covariance
Σi ∈ R3×3, an opacity σi ∈ [0, 1], and a color ci(ν) ∈ R3.
The radiance field is defined as:

σ(x) =

G∑
i=1

σigi(x), c(x, ν) =

∑G
i=1 ci(ν)σigi(x)∑G

j=1 σjgj(x)
,

where gi(x) is the Gaussian function. The scene is ren-
dered by tracing rays through the Gaussians, making the
process fast and efficient.

Gaussian Splatting is useful for representing 3D scenes
with many small objects. It uses less memory than methods
like voxels or meshes and allows faster rendering. It is effi-
cient for large scenes that contain high-details in neural 3D
reconstruction.

2.3. Splatter Image

Splatter Image [7] builds on Gaussian Splatting to effi-
ciently reconstruct 3D objects from a single image. It pre-

dicts a 3D Gaussian per pixel from a 2D input image using a
neural network. Each pixel u = (u1, u2) has a correspond-
ing Gaussian parameterized by opacity σu, mean µu ∈ R3,
covariance Σu, and color cu. The mean µu is projected
from 2D image space to 3D using a predicted depth du and
offsets ∆u = (∆x,∆y,∆z):

µu =

u1 · du +∆x

u2 · du +∆y

du +∆z

 .

The model is trained using a reconstruction loss over
multi-view datasets. Given a source image I , the model
predicts a set of Gaussians θ = S(I), which are then ren-
dered to form a novel view R(θ, π). The reconstruction loss
is defined as:

L(S) =
1

|D|
∑

(I,J,π)∈D

∥J −R(S(I), π)∥2,

where J is the target image, and π is the viewpoint
change between the source and target cameras. This loss
helps the model predict Gaussians that can accurately recre-
ate new views of the scene with single or few-view inputs.

2.4. Synthetic-to-real Generalization

Synthetic-to-real generalization aims to train models us-
ing synthetic data while ensuring they perform well on real-
world data. This is important in applications where collect-
ing dense 3D real-world data is expensive, such as in au-
tonomous driving, robotics, and drone navigation [8]. In the
context of 3D reconstruction, generalization from synthetic
to real data has been a challenge due to the domain gap be-
tween synthetic datasets, which tend to have cleaner and
more consistent features, and real-world datasets, which
contain noise, motion blur, and lighting variations [10].
Previous works on NeRF [6], like IBRNet [9] and GeoN-
eRF [3], largely focus on scene generalization using real
data, often neglecting the complexities of synthetic-to-real
transfer. However, experiments show that models trained
on synthetic data tend to produce sharper but less accu-
rate volume densities, resulting in more artifacts when ap-
plied to real scenes [10]. Recent methods such as Con-
traNeRF introduce contrastive learning with geometry con-
straints to bridge this gap and improve the model’s perfor-
mance on real data while benefiting from the detail-rich syn-
thetic data [10].

2.5. ContraNeRF

ContraNeRF [10], different from Gaussian splatting
methods, improves NeRF-based models for generating new
views of scenes, especially when transitioning from syn-
thetic to real-world data. Traditional NeRF models struggle
with this transition due to differences in textures, lighting,

2

and noise between synthetic and real data. ContraNeRF ad-
dresses this using contrastive learning, helping the model
perform better across both domains. The method achieves
state-of-the-art results by training the model to recognize
consistent features across different viewpoints (positive ex-
amples) while ignoring those that vary (negative examples).

By learning consistent features across views, the model
understands the scene’s geometry better, avoiding visual
errors and ensuring that its interpretation of structure and
space remains stable. It also handles real-world imperfec-
tions by focusing on geometric shapes rather than surface
details, making it more reliable for real-world applications.

2.6. Pre-training on Synthetic Datasets

Pre-training models on synthetic datasets is a common
way to use large amounts of labeled data without the high
cost of collecting real-world data. Datasets like Obja-
verse [1] and 3D-Front [2] offer a wide variety of 3D mod-
els that help neural networks learn basic features. These
pre-trained models can then be fine-tuned on real datasets to
improve their performance. However, how well this works
depends on how similar the synthetic data is to real data. If
there are big differences, it can be harder to transfer what
the model has learned, as discussed in studies on synthetic-
to-real generalization [10].

3. Experiments
In this section, we explain the steps taken to investigate

the gap between synthetic and real-world data for 3D re-
construction tasks. We used two datasets: 3D-Front [2], a
synthetic dataset with indoor scenes, and ScanNet++ [11],
a real-world dataset of indoor environments. First, we pre-
processed the datasets to extract objects and create multi-
ple views. Then, we fine-tuned a pre-trained Splatter Im-
age model using the 3D-Front dataset. After fine-tuning,
we evaluated the model using the ScanNet++ dataset to test
how well it could perform on real-world data. The goal of
this process is to better understand the model’s ability to
transition from synthetic to real-world data and to find the
challenges in 3D reconstruction tasks caused by this gap.

3.1. Datasets

3.1.1 3D-Front

We used the 3D-Front dataset to fine-tune Splatter-Image
model. 3D-Front is a large synthetic dataset with 3D room
layouts filled with various furniture and objects [2]. This
dataset is very useful for tasks related to understanding 3D
scenes, as it contains high-quality 3D models of rooms and
furniture, along with their positions and textures. Each ob-
ject and room is designed to look like real-world scenes.

Our focus was on object-based reconstruction, so instead
of using entire rooms, our aim was to extract individual ob-

jects like furniture from the dataset. Originally, we wanted
to separate these objects from the full room scenes, keeping
the noise from the scenes, such as occlusions or changes in
lighting. This noise is important because, in real-world sit-
uations, objects are often partially hidden by other items or
look different depending on lighting and camera angle. In-
cluding this noise would help the model perform better on
real-world data, where such imperfections are common.

However, we couldn’t get the camera pose data needed
for the full scenes, so we had to adjust our approach. Instead
of using the entire scenes, we worked with the 3D object
models provided in the dataset.

3.1.2 ScanNet++

For the test set, we used ScanNet++, a real-world dataset
designed for indoor scene understanding [11]. This dataset
consists of detailed 3D reconstructions of various indoor
environments and numerous RGB images captured from
different viewpoints within each scene. These images are
aligned with their corresponding 3D geometry, making the
dataset particularly valuable for tasks that require a combi-
nation of 2D and 3D data.

In addition to the 3D scene data, ScanNet++ includes
images taken from an iPhone camera video, which are
captured from multiple angles and provide comprehensive
scene coverage. Each image in the dataset is paired with
its corresponding camera pose data, meaning that for ev-
ery frame, the exact position and orientation of the camera
about the 3D scene is available. This feature allows for ac-
curate alignment between the 2D images and the 3D model
of the room.

The availability of both the images and the camera poses
makes ScanNet++ ideal for our task, which involves seg-
menting objects from the scene while preserving the noisy
conditions that naturally occur in real-world environments.
These conditions include occlusions, varying lighting con-
ditions, and other imperfections that are present when cap-
turing images from different angles. By using ScanNet++,
we can accurately simulate these real-world challenges and
ensure that our model is exposed to a wide range of visual
noise.

3.2. Preprocessing

For the preprocessing of the 3D-Front dataset, we took
3D object models that are used for constructing 3D scenes.
These objects are mainly furniture. To fine-tune the model,
we needed multiple views of each object and the corre-
sponding camera poses. We generated these views by ran-
domly rotating the objects and creating 128 × 128 images
from each view. We also saved the camera’s transformation
matrix for each view, so the model could learn from differ-
ent angles of the objects.

3

Figure 1. The process of extracting object instances from DSLR
images. The final input image contains the masked object, pre-
serving scene noise and occlusions.

Scene Frame Objects

Table 1. Scene frames and corresponding objects extracted from
that frame. The instances match for the two example scenes, and
represents the same object from different views.

For the test dataset, we required multiple views of the
object along with their corresponding camera poses. To
achieve this, we began by utilizing DSLR images from the
dataset. While the dataset provides semantic and instance
segmentation information for the 3D scenes, it does not pro-
vide such information for the 2D images directly. To bridge
this gap, we projected the 3D semantic data onto the 2D
images by making use of the available camera pose infor-
mation.

By rasterizing the 3D semantics onto the 2D image, we
were able to generate instance segmentation for the 2D im-
ages. Each pixel in the 2D image was assigned a specific
instance ID, allowing us to generate a mask for each object
instance easily. This mask is to segment individual objects
from the scene. In Figure 1, the mask for the table is shown,
and based on this mask, we were able to extract the object
from the scene.

We repeated this process for five different DSLR images
within each scene, which enabled us to capture multiple
views of the same object from different angles. The scene
frames were taken from a video, and in some frames, com-
pletely different pieces of furniture appeared because the
camera view was from the opposite side of the room, ex-
posing completely different objects. To avoid this inconsis-
tency and be able to select and extract objects automatically,
we only selected a portion of the frames from the start of the
video, where there were only small changes in camera pose

between each frame. As a result, we did not obtain multi-
ple views of objects from drastically different perspectives
like we did with 3D-Front objects, but rather from slightly
varied angles. Table 1 demonstrates examples of different
views for one scene, and how the final objects are masked
out from those frames.

To determine which objects to extract, we prioritized the
ones based on the top instance labels provided by the Scan-
Net++ dataset. The objects we focused on for extraction
were chairs, tables, office chairs, cabinets, bookshelves, so-
fas, beds, monitors, storage cabinets, and doors. This en-
sured that the most relevant and available objects were se-
lected for segmentation and further processing. Through
this method, we achieved the required object views and cor-
responding camera poses for our test dataset.

3.3. Model Setup

For the model benchmarking, we utilized two models.
The first model is a pre-trained version provided by the au-
thors of the Splatter-Image technique. This model was orig-
inally trained on the Objaverse dataset, a comprehensive
and large-scale dataset containing a wide variety of object
types [1].

To adapt this pre-trained model to our specific task, we
fine-tuned it using the 3D-Front dataset, which is more
focused on indoor scene furniture. Additionally, we at-
tempted to train a model from scratch using only the 3D-
Front dataset. However, due to the relatively small size of
the 3D-Front dataset, this approach did not yield any mean-
ingful results, and as a result, we chose to discard the model
trained from scratch.

3.4. Evaluation

For evaluation, we followed the standards of Splatter-
Image [7]. We evaluate the quality of our 3D reconstruc-
tions using three key metrics: Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS). PSNR looks at
the pixel-level differences between the original and recon-
structed images, measuring how much an image has been
corrupted by noise. SSIM focuses on the structural similar-
ity of the images, comparing things like brightness, con-
trast, and how well the structure is preserved. A higher
SSIM score shows that the reconstruction keeps the impor-
tant structural details of the original image. LPIPS is a met-
ric that uses neural networks to measure how similar two
images appear to a person. Lower LPIPS values mean the
reconstructed image looks more like the original in terms of
human perception.

To evaluate the models, Splatter-Image inputs a single
image that is preprocessed before being fed. The prepro-
cessing involves extracting the object from the background,
normalizing its position, and adding a white background to

4

Dataset Model PSNR ↑ SSIM ↑ LPIPS ↓

3DFront
Pre-trained 18.906 0.873 0.136

Fine-tuned 23.439 0.919 0.121

Scannet++
Pre-trained 2.843 0.230 0.449

Fine-tuned 3.445 0.259 0.442

Table 2. The results show the performance of both pre-trained and
fine-tuned models, with higher PSNR and SSIM values indicating
better reconstruction quality and lower LPIPS values indicating
improved perceptual similarity.

the image. If the image size differs from 128× 128, it is re-
shaped accordingly. We followed this same preprocessing
method for our evaluations.

4. Results
The results in Table 2 show that the fine-tuned model per-

forms better than the pre-trained model when evaluated on
the 3D-Front dataset. The fine-tuned model performs better
in terms of PSNR and SSIM, meaning that it produces more
accurate and structurally similar reconstructions. Addition-
ally, the LPIPS score, is lower for the fine-tuned model, in-
dicating higher quality. This improvement is likely because
the fine-tuned model was trained on the 3D-Front dataset.
Since the model had already seen similar data during train-
ing, it was better at handling the test set, leading to stronger
results. The model learned the structure and characteristics
of 3D-Front objects during training, which helped it per-
form better when tested on the same type of data.

The views created for the evaluation of 3D reconstruc-
tion in 3D-Front are created by rotating the 3D object mesh
randomly. This means the evaluation is likely to calculate
all reconstructed parts of the object, including the front,
back, sides, and even the underside. The fine-tuned model
has a more complete understanding of the object’s structure,
which explains the improved performance.

However, when we compare the pre-trained and fine-
tuned models on the ScanNet++ dataset, the comparison is
not as reliable or meaningful. The views for ScanNet++
were generated using video captures, as explained in Sec-
tion 3.2. These video captures provide only slightly differ-
ent perspectives of the object in each frame. This means
that most of the evaluation views are very similar to the in-
put image, showing mostly the front of the object. Because
of this, the calculations does not get to see the back, under-
side, or other important parts of the object that would help
it evaluate the reconstruction of the object fully.

As a result, the evaluation on ScanNet++ only tests how
well the model can reconstruct the front of the object and
does not give a full picture of the model’s abilities. This is

why the performance numbers on ScanNet++ are not truly
representative of how well the model works, and they don’t
give a clear comparison between the pre-trained and fine-
tuned models. The limited views make it difficult to see how
well the model can generalize and reconstruct the whole ob-
ject, so the numbers in the table for ScanNet++ don’t tell the
full story about the differences between the two models.

During the process of generating visual results, we no-
ticed a difference between the 3D objects produced by the
pre-trained and fine-tuned models. The objects generated
by the pre-trained model appeared more compact and well-
defined, while the objects from the fine-tuned model ex-
tended further in depth and became less clear the deeper
they went. This pattern was consistent across different in-
put images, as shown in Table 3.

What was surprising, though, was how different the vi-
sual results were compared to the numerical results. Based
on the metrics, we expected the fine-tuned model to produce
reconstructions that were at least similar or slightly more
accurate than those from the pre-trained model. However,
the visual outputs showed much larger differences between
the two models than we had predicted. We thought the fine-
tuned model would generate clearer reconstructions, but it
instead produced more depth and non-clear predictions in
some areas, making the results appear less sharp.

For the visual results to appear non-clear and exagger-
ated in depth, one possible explanation could be the nature
of the 3D-Front dataset, which was used to fine-tune the
model. This dataset contains larger objects, such as sofas
and beds, which may have led the fine-tuned model to pri-
oritize generating objects with more depth and volume. The
model may have adapted to these large-scale objects by cre-
ating deeper structures, even if that introduces some lack of
sharpness in the final output. This tendency to emphasize
depth could explain why the fine-tuned model produces 3D
reconstructions that appear less compact and more extended
compared to the pre-trained model.

The numerical results may be slightly better with the
fine-tuned model because it tends to create more depth in its
reconstructions. When evaluating 3D-Front objects, which
often have significant depth, this extra focus on depth can
lead to more predictions in that area, potentially improving
the model’s performance metrics. This increased depth may
help compensate for the numerical difference between the
fine-tuned and pre-trained versions. However, this does not
necessarily mean that the fine-tuned model is better over-
all. As we observed in the visual results, the fine-tuned
model often produces unclear predictions in the depth re-
gions, leading to reconstructions that lack meaningful struc-
ture.

When evaluating the models with the ScanNet++ dataset,
we noticed that the input images were quite different from
those in the 3D-Front dataset. This is largely because Scan-

5

Input Image Pre-trained Finetuned

Table 3. Reconstructed 3D objects generated by pre-trained and
fine-tuned models. Each row corresponds to an input image of
a furniture item (table, chair, and sofa) selected from 3D-Front
dataset, with the results shown from three different views.

Net++ is a real-world dataset, capturing more variability
and noise in the scenes. As seen in Table 4, the input im-
ages are also noisier. For instance, in the case of a table and
bookshelf, there are objects placed on it, but since we are
extracting only the table object based on its instance seg-

Input Image Pre-trained Finetuned

Table 4. Reconstructed 3D objects generated by pre-trained and
fine-tuned models. Each row corresponds to an input image of
a furniture item (bookshelf, table, and chair) selected from Scan-
Net++ dataset, with the results shown from three different views.

mentation, the items on top are excluded from the image.
This exclusion is consistent across multiple views of the
same object, resulting in an object representation with holes
or missing parts. Additionally, not all views contain the
complete object; in some cases, the scene only captures part
of the object, cutting off important sections. This inconsis-
tency makes it harder for the model to fully understand and

6

Dataset Model PSNR ↑ SSIM ↑ LPIPS ↓

Scannet++
Pretrained 2.571 0.236 0.438

Fine-tuned 2.975 0.253 0.441

Table 5. The results show the performance of both pre-trained
and fine-tuned models specifically calculated for intuitively diffi-
cult objects.

reconstruct the object from the available data, leading to in-
complete representations.

Such representations make it difficult to interpret the nu-
merical results accurately. Furthermore, both models at-
tempt to reconstruct these areas of missing data, but instead
of leaving the holes, they fill them in with white, which
is the background color. This happens because we follow
the same pre-processing method described in the Splatter-
Image paper, where the background of the input image is
replaced with white before being fed into the model. Hav-
ing random holes on the object complicates the reconstruc-
tion process for the model, making it harder to generate
the object’s full structure accurately. This factor further
highlights the challenges of working with real-world data,
where noise, incomplete object information, and inconsis-
tent views introduce additional difficulties for 3D recon-
struction.

4.1. Intuitively Difficult Objects

After observing that the fine-tuned model tends to gen-
erate results with more depth, we became curious about
how the model would handle the reconstruction of objects
that might be particularly challenging for a neural network
to learn. Specifically, we focused on objects like curtains,
blankets, and blinds, which are inherently difficult to model
in 3D. These objects often have varying shapes depending
on their position in a scene. For instance, a blanket can take
on many different 3D forms depending on how it is placed,
and each blanket might have a unique shape, making it more
complex for a model to capture compared to more rigid, sta-
ble objects like beds or sofas. This variability poses a chal-
lenge for the model to generalize across different instances
of the same type of object. As a result, we decided to inves-
tigate how well the model performs in reconstructing these
difficult objects to better understand its limitations in han-
dling complex shapes.

Table 5 presents the numerical results for intuitively dif-
ficult objects, where the metrics are computed solely based
on specific labels and their reconstruction quality. These re-
sults are similar to those discussed previously, showing only
slight differences.

Instead of numerical results, the visual results in Table 6
provide a clearer demonstration of the difference between

Frame Pre-trained Finetuned

Table 6. Reconstructed 3D objects generated by pre-trained and
fine-tuned models. The left column displays the original input
scenes and extracted objects (blanket and curtain) from ScanNet++
dataset, with the results shown from three different views for each
model.

the two models. The fine-tuned model produces reconstruc-
tions that are less opaque and exhibit greater depth, pro-
viding a more detailed 3D representation. In contrast, the
pre-trained model generates more compact reconstructions,
with less emphasis on the third dimension, which may actu-
ally be advantageous for certain objects like curtains. This
difference is not fully captured in the numerical results, as
the evaluation is based on limited viewpoints—primarily
slight variations of the front side of the object, as mentioned
before. This limitation prevents the numerical metrics from
reflecting the full spatial quality and depth that the visual
results show.

5. Conclusion
In this paper, we studied how well neural 3D recon-

struction models can work on both synthetic and real-world
datasets, focusing on the gap between them. We used the
Splatter Image as a base model, pre-trained on the Ob-
javerse dataset, and fine-tuned it on 3D-Front synthetic
dataset. We evaluated both models on both synthetic and

7

real-world data to understand the challenges of generaliza-
tion from synthetic to real-world environments. Our ex-
periments showed a noticeable difference in performance
when moving from synthetic to real-world data, and the
challenges of what is known as the “sim-to-real gap”.

Our results showed that the fine-tuned model performed
better on synthetic dataset than the real-world dataset, Scan-
net++. This improvement could be seen in higher scores
in metrics like PSNR, SSIM, and LPIPS. The models were
better at producing accurate and clear 3D reconstructions
after being trained on data similar to the test set. However,
when the models were tested on the real-world ScanNet++
dataset, the results were not meaningful. Both models had
trouble creating high-quality reconstructions for real-world
data, showing that models trained on synthetic datasets
could not generalize well.

A challenge we demonstrated is that synthetic datasets
are helpful for training but they do not capture the complex-
ity of real-world environments. Synthetic scenes are usually
well-organized, free from noise, and consistent in lighting
and object placement. In contrast, real-world scenes, like
those in ScanNet++, are messy, with lighting changes, oc-
clusions, and random object arrangements. This makes it
hard for models trained on synthetic data to perform well in
the real world.

We also noted some limitations in the way we evaluated
the models. Metrics like PSNR, SSIM, and LPIPS, while
useful, do not fully capture the quality of 3D reconstruc-
tions when there is a difference in the views we capture for
the objects. The visual results showed that the fine-tuned
model often produces 3D reconstructions with more depth,
but these reconstructions are sometimes less clear and nois-
ier. On the other hand, the pre-trained model makes more
compact and simpler reconstructions. These differences
aren’t always visible in the numerical results because we
had to test the models on only front views of the objects for
ScanNet++ dataset. This is also one of the limitations of
real-world data, where it is hard to obtain desired inputs for
a proper evaluation.

The gap between synthetic and real-world datasets shows
the difficulty of model generalization in synthetic-to-real
cases. One future work idea is to train models directly on
3D scenes, instead of focusing on individual objects. By
learning from whole scenes, the models could better under-
stand the relationships between objects, lighting, and occlu-
sions, which are critical for performing well in real-world
environments. This approach could help the models capture
the complexities of scenes for better generalization across
domains. Ideas like integrating contrastive learning and ad-
justing the loss function to focus on general object features
instead of small details could also possibly improve the gen-
eralization of models trained with synthetic datasets when
evaluated on real-world datasets.

References
[1] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,

Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Obja-
verse: A universe of annotated 3d objects. arXiv preprint
arXiv:2212.08051, 2022. 1, 3, 4

[2] Huan Fu, Bowen Cai, Lin Gao, Lingxiao Zhang, Jiaming
Wang Cao Li, Zengqi Xun, Chengyue Sun, Rongfei Jia, Bin-
qiang Zhao, and Hao Zhang. 3d-front: 3d furnished rooms
with layouts and semantics, 2021. 1, 3

[3] Mohammad Mahdi Johari, Yann Lepoittevin, and François
Fleuret. Geonerf: Generalizing nerf with geometry priors,
2022. 2

[4] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics,
42(4), July 2023. 2

[5] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2019. 2

[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis, 2020. 2

[7] Stanislaw Szymanowicz, Christian Rupprecht, and Andrea
Vedaldi. Splatter image: Ultra-fast single-view 3d recon-
struction. Conference on Computer Vision and Pattern
Recognition (CVPR), 2024. 1, 2, 4

[8] Joanne Truong, Sonia Chernova, and Dhruv Batra. Bi-
directional domain adaptation for sim2real transfer of em-
bodied navigation agents. IEEE Robotics and Automation
Letters, 6(2):2634–2641, Apr. 2021. 2

[9] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering, 2021. 2

[10] Hao Yang, Lanqing Hong, Aoxue Li, Tianyang Hu, Zhen-
guo Li, Gim Hee Lee, and Liwei Wang. Contranerf: Gen-
eralizable neural radiance fields for synthetic-to-real novel
view synthesis via contrastive learning. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2023. 1, 2, 3

[11] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,
and Angela Dai. Scannet++: A high-fidelity dataset of 3d
indoor scenes. In Proceedings of the International Confer-
ence on Computer Vision (ICCV), 2023. 1, 3

[12] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa vol-
ume splatting. In Proceedings Visualization, 2001. VIS ’01.,
pages 29–538, 2001. 2

8

	. Introduction
	. Related Work
	. Neural 3D Reconstruction Models
	. Gaussian Splatting
	. Splatter Image
	. Synthetic-to-real Generalization
	. ContraNeRF
	. Pre-training on Synthetic Datasets

	. Experiments
	. Datasets
	3D-Front
	ScanNet++

	. Preprocessing
	. Model Setup
	. Evaluation

	. Results
	. Intuitively Difficult Objects

	. Conclusion

